Band structure and band-gap control in photonic superlattices
نویسندگان
چکیده
منابع مشابه
Duplexer using microwave photonic band gap structure
We propose a frequency selective duplexer using microwave photonic band gap ~PBG! structures. It uses two different PBGs to control the propagation of electromagnetic waves in the microwave region. In this structure, an additional narrow reflection band appears in the transmission spectrum when the PBG structure is not properly located relative to the T junction. By considering multiple reflect...
متن کاملLithographic band gap tuning in photonic band gap crystals
We describe the lithographic control over the spectral response of three-dimensional photonic crystals. By precise microfabrication of the geometry using a reproducible and reliable procedure consisting of electron beam lithography followed by dry etching, we have shifted the conduction band of crystals within the near-infrared. Such microfabrication has enabled us to reproducibly define photon...
متن کاملAngular photonic band gap
Materials and structures that strongly discriminate electromagnetic radiation based on one, or more of its properties (e.g. polarization, frequency) play an enabling role for a wide range of physical phenomena. For example, polarizers can selectively transmit light based on its polarization [1] over a wide range of frequencies; photonic crystals [2] (PhCs) can reflect light of certain frequenci...
متن کاملPhotonic band-gap structures
The analogy between electromagnetic wave propagation in multidimensionally periodic structures and electronwave propagation in real crystals has proven to be a fruitful one. Initial efforts were motivated by the prospect of a photonic band gap, a frequency band in three-dimensional dielectric structures in which electromagnetic waves are forbidden irrespective of the propagation direction in sp...
متن کاملPhotonic-band-gap resonator gyrotron.
We report the design and experimental demonstration of a gyrotron oscillator using a photonic-band-gap (PBG) structure to eliminate mode competition in a highly overmoded resonator. The PBG cavity supports a TE(041)-like mode at 140 GHz and is designed to have no competing modes over a minimum frequency range delta omega/omega of 30% about the design mode. Experimental operation of a PBG gyrotr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2006
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.74.153102